Seat No. \square
Q.P Set CODE - A

Instructions :

(1) All questions / activities are compulsory.
(2) Use of calculators is not allowed.
(3) The numbers to the right of the question indicate full marks.
(4) In case of MCQs, only the first attempt will be evaluated and will be given credit
5) For every MCQ, the correct alternative (A), (B), (C) or (D) of answers with subsequent number is written as an answer.

Q.1A) Multiple Choice Questions

1 Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of the altitude.
a. 9 cm
b. 4 cm
c. 6 cm
d. $2 \sqrt{6} \mathrm{~cm}$

2 A line makes an angle of 30° with the positive direction of X - axis. So the slope of the line is \qquad
a. $\frac{1}{2}$
b. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{3}}$
d. $\sqrt{3}$

3 Complete the trigonometric identity $\sin ^{2} \theta+\cos ^{2} \theta=$?
a. 1
b. $\sqrt{ } 2$
c. -1
d. 0

4 Two circles having diameters 8 cm and 6 cm touch each other internally. Find the distance between their centres.
a. 2
b. 14
c. 7
d. 1

Q1B)Answer the following.
1 Prove the following
$\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)=1$
2 Find the distance between the points $P(-1,1)$ and $Q(5,-7)$.
3 Identify, with reason, if the following is Pythagorean triplet. (10, 24, 27)
4 In the adjoining figure, seg $D E$ is the chord of the circle with center C. Seg $C F \perp \operatorname{seg} D E$ and $D E=16 \mathrm{~cm}$, then find the length of DF.

Q2A)Attempt the following (Activity)(Any Two)

1 The chords corresponding to congruent arcs of a circle are congruent.
Prove the theorem by completing following activity.

Given: In a circle with centre B, arc APC $\cong \operatorname{arc}$ DQE
To Prove: chord AC \cong chord DE.

Proof:

In $\triangle A B C$ and $\triangle D B E$,
side $A B \cong$ side $D B$
side $B C \cong$ side
$\angle A B C \cong \angle D B E \quad$ (Measure of congruent arcs)
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{DBE}$

In fig. $P M=10 \mathrm{~cm}, \mathrm{~A}(\Delta \mathrm{PQS})=100 \mathrm{sqcm} \mathrm{A}(\Delta \mathrm{QRS})=110$ sqcm then $\mathrm{NR}=$?

3 A washing tub in the shape of a frustum of a cone has height 21 cm . The radii of the circular top and bottom are 20 cm and 15 cm respectively. What is the capacity of the tub? $\left(\pi=\frac{22}{7}\right)$
Volume of washing tub $=\frac{1}{3} \times \pi h(\quad$)

$$
=\frac{3}{3} \times \frac{22}{7} \times 21\left(20^{2}+15^{2}+20 \times 15\right)
$$

$$
=22 \text { (___ }
$$

$=22 \times$ \qquad
Volume of washing tub $=$ \qquad cm^{3}
\therefore Capacity of washing tub is \qquad cm^{3}

Q2B)Answer the following (Any Four)

1 Prove that: $\sqrt{\frac{\pi-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$

2 In figure, $m(\operatorname{arc} N S)=125^{\circ}, m(\operatorname{arc} E F)=37^{\circ}$, find the measure $\angle N M S$.
3 If two circles intersect each other at points S and R. Their common tangent $P Q$ touches the circle at points P, Q. Prove that, $\angle \mathrm{PRQ}+\angle \mathrm{PSQ}=180^{\circ}$

4 Find the centroids of the triangles whose vertices are given below.
$(4,7),(8,4),(7,11)$
5

In o $A B C, \angle B=90^{\circ}, \angle A=30^{\circ}, A C=14$, then find $A B$ and $B C$.

Q3A)Attempt the following (Activity)(Any One)

1 A line is parallel to one side of triangle which intersects remaining two sides in two distinct point then that line divides sides in same proportion.

Given:

In $\triangle A B C$ line / || side $B C$ \& line / intersect side $A B$ in P \& side $A C$ in Q.

Construction : Draw $C P$ and $B Q$.
Proof: $\triangle A P Q$ and $\triangle P Q B$ have equal height.

$\frac{A^{A}(\triangle \mathrm{APBC})}{\mathrm{A}(\triangle \mathrm{PQC})}=\frac{\cdots \cdots}{\mathrm{QC}} \quad$ (areas in proportion of base)
$\triangle P Q C$ and $\triangle P Q B$ have common base. \qquad and seg
$P Q|\mid$ seg $B C$
Hence height of $\triangle P Q C$ and $\triangle P Q B$ is same.
$\therefore \quad \mathrm{A}(\triangle \mathrm{PQC})=\mathrm{A}(\Delta \ldots . .$.$) .$
$\therefore \quad \frac{A(\triangle A P Q)}{A(\triangle P Q B)}=\frac{A(\Delta(\square \ldots . . .}{A(\Delta \ldots)}$
$\therefore \quad \frac{A P}{P B}=\frac{A Q}{Q C} \quad$ [From (I) and (II)]
2 From the top of a lighthouse, an observer looking at a ship makes an angle of depression of 60°. If the height of the lighthouse is 90 m then find how far is the ship from the lighthouse. $(\sqrt{3}=1.73)$

Q3B)Solve the following (Any Two)

1 In figure, O is the centre of a circle, chord $\mathrm{PQ} \cong$ chord RS . If $\angle P O R=70^{\circ}$ and $(\operatorname{arc} R S)=80^{\circ}$.
Find (1) $m(\operatorname{arc} P R)$
(2) $m(\operatorname{arc} Q S)$
(3) $m(\operatorname{arc}$ QSR)

2 Ratio of areas of two triangles with equal heights is $2: 3$. If base of the smaller triangle is 6 cm then what is the corresponding base of the bigger triangle?
$3 \triangle A B C$ is an equilateral triangle. Point P is on base $B C$ such that $P C={ }_{3}^{1} B C$, if $A B=6 \mathrm{~cm}$ find $A P$.
4 Draw a circle with centre O and radius 3.5 cm . Take point P at a distance of 5.7 cm . from the centre. Draw a tangent to the circle from point P.

1 In the figure, seg $A B$ is a chord of a circle with centre P.
If $P A=8 \mathrm{~cm}$ and distance of chord $A B$ from the centre P is 4 cm , find the area of the shaded portion. $(\pi=3.14, \sqrt{ } 3=1.73)$

2 Construct $\square \mathrm{PYQ}$ such that, $\mathrm{PY}=6.3 \mathrm{~cm}, \mathrm{YQ}=7.2 \mathrm{~cm}, \mathrm{PQ}=5.8 \mathrm{~cm}$. If $\frac{\mathrm{YZ}}{\mathrm{YQ}}={ }_{5}^{6}$, then construct $\square \mathrm{XYZ}$ similar to $\square P Y Q$.

3

Observe the measures of pots in the above figures.
How many jugs of water can the cylindrical pot hold?

Q5)Creative questions(Any One)

1

In the above figure, seg $A B$ is a diameter of a circle with centre P.C is any point on the circle. seg $C E \perp$ seg $A B$.
Prove that CE is the geometric mean of AE and EB. Write the proof with the help of following steps :
i. Draw ray $C E$. It intersects the circle at D.
ii. Show that CE = ED.
iii. Write the result using theorem of intersection of chords inside a circle.
iv. Using CE = ED, complete the proof.
$2 \triangle A B C$ is a triangle where $\angle C=90^{\circ}$.
Let $B C=a, C A=b, A B=c$ and let ' p ' be the length of the perpendicular C on $A B$.
i) With the help of area of triangle, prove $\mathrm{cp}=\mathrm{ab}$,
ii) with the application of Pythagoras theorem, prove $\underset{p^{2}}{1}=\underset{a^{2}}{1}+\underset{b^{2}}{1}$

